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A vehicle track model is developed with the objective of providing new
capabilities in modelling track vibration response. Understanding track vibration
is essential to evaluating the durability of track components and the vibration
energy transmitted to the vehicle. A new element model is derived herein that
represents a track span as a continuous elastic member with distributed inertia.
This model captures the effects of static track sag, static track tension, and the
coupling of longitudinal and transverse track vibration. Results from a companion
experimental study on a section of track are reviewed and support the use of this
continuum approximation over a well-defined frequency spectrum. The track
element model is then extended to describe an entire track circuit for an example
military vehicle. An eigenanalysis of this circuit model leads to the system vibration
modes that are subsequently employed in a low order model for forced response.
The forced response characteristics resulting from two major excitation sources,
roadarm motion and polygonal action, are described. The modal content of the
track response is then examined to determine the minimum size model required to
describe low-frequency track vibration. It is concluded that such low order system
models offer an efficient alternative to established large degree-of-freedom
multi-body track models.

© 1999 Academic Press

1. INTRODUCTION

Models of mechanical systems involving closed kinematic chains, such as vehicle
track models, utilize a variety of representations for the chain itself. As one example,
tank track applications involve on the order of 80 chain links (pitches) which form
a continuous track that engages with the drive sprocket, idler wheel, road wheels
and support rollers; refer to Figure 1. The road wheels are mounted on torsion-bar
roadarms providing suspension to the vehicle.

This suspension provides some isolation from terrain-induced vibration.
Nevertheless, very significant vibration levels remain, both in the track where they
influence the durability of track components, and in the hull where they degrade the
performance of on-board instrumentation, electronics, and personnel. The track is
a major source of this vibration energy.

There are two dominant modes of track vibration: transverse and longitudinal.
Transverse track vibrations generate deformation normal to the track span and in
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Figure 1. Track circuit schematic.

the vertical plane. This deformation requires relative rotation of adjacent pitches
through rotation about the connecting pin/bushing assembly. Transverse track
vibrations are readily visible and may also reach amplitudes sufficiently large to
produce impacts of the track with the underside of the hull (sponson). Longitudinal
track vibrations generate deformation tangent to the track span and require the
relative separation of adjacent pitches through the radial compliance of the
pin/bushing assembly. Longitudinal vibrations produce dynamic track tension and
may promote bushing failure. These two modes of vibration are coupled, in general,
due to the small static sag of the tensioned track. Note that the term “track vibration”
used in this paper refers to the vibration of the track strand and not specific
components within the track strand, such as the centerguide, bushings, pins, shoes, etc.

There are multiple sources of excitation to the track. At the track-terrain
interface, the front and rear roadwheels provide motion at the boundary of the
upper track spans. Rigid-body vehicle motion generates inertial loading for the
entire circuit. Both of these sources can produce substantial vibration at lower
frequencies. In a higher frequency spectrum proportional to vehicle speed, the track
is excited by the drive sprocket, idler and other elements through polygonal action
(pitches conforming to a polygon) as well as impact.

Early investigations of tracked vehicle modelling focused on kinematic track effects
assuming negligible track inertia. These early models, therefore, cannot capture track
vibration. Wheeler [1] incorporates a quasi-static model for track stretching to
approximate the vertical forces of wheel-ground interaction. Garnich and Grimm
[2] use the same track model but account for the effects of track bridging, drive
sprocket interaction, and a track compensating linkage. Bennett and Penny [3]
extend the quasi-static model by accounting for initial slack (sag) of the track.
McCullough and Haug [4] developed a tracked vehicle model assuming quasi-static
track response, referred to as the track super-element, in which rigid-body equations
of motion are efficiently derived for systems containing recurring subsystems. Track
tensions are derived from catenary cable equations and bridging effects. Dhir and
Sankar, in developing a high-speed tracked vehicle model [5], also approximate
track loads by considering the quasi-static stretching of a massless belt.

Tracked vehicle models also exist in which each pitch, sprocket, wheel and roller
is assigned the requisite degrees of freedom (d.o.f.) in forming a large multi-body
dynamic system. Choi [6] presents such a multi-body dynamic model in which the
track consists of individual links connected by single d.of. revolute joints.
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Highly detailed models of this nature have also been developed for the U.S.
Army Tank Automotive Command by Wilcox [7,8] and analyze track motion and
track—sprocket interaction to high fidelity. Similarly, models by Galaitsis [9] employ
a multi-body representation for the tracked vehicle model which is subsequently used
to predict dynamic track loads during flat terrain traversal. These multi-body
representations, while complete, frequently yield models containing several
hundred d.o.f.,, which is presently impractical for use in real-time simulation.

The purpose of this paper is to present an alternative track model which can be
used to support rapid simulations of tracked vehicle dynamics at frequencies
characteristic of track vibration. The model developed herein considers the track as
a continuum and captures both transverse and longitudinal track vibration.
Solution efficiency derives from the use of classical modal co-ordinates. A linear
model containing both continuous and discrete elements is derived that governs the
coupled response of the track and the rotational response of the drive sprocket,
road and idler wheels and support rollers. Roadarm motions and polygonal action
are included as example excitation sources.

The outline of this paper is as follows. First, a description of the continuum
element used to model the dynamics of the free track spans is presented. Second,
results from an experiment on a section of track are reviewed and support the use of
the continuum element over a well-defined frequency spectrum. Next, a track
circuit model combining discrete and continuum elements is assembled in the
context of an example application. An eigenanalysis of this circuit model leads to
the modes that are subsequently used to evaluate forced response characteristics.
Example results are provided which show that low-order tracked vehicle models
can be used to capture low-frequency track vibration response.

2. ELEMENT MODEL

A continuum model is employed which describes the in-plane dynamics of
a massive but flexible track sagging under its own weight.

With reference to Figure 2, this continuum model represents one span of the
track circuit shown in Figure 1 and reduces to that of a shallow sag cable [10]. The
co-ordinates U(S, T) and V' (S, T) denote, respectively, longitudinal and transverse
span displacements about an equilibrium configuration. S is an independent span
co-ordinate defined on the domain S e€[0, L], where L is span length. T denotes
time. The equilibrium configuration can be assumed to be a parabola since the
track satisfies the small sag condition KL < 1 where K is the curvature of the
equilibrium configuration; refer to Irvine and Caughey [10] and Perkins [11].

The equations of motion for free in-plane motion about this equilibrium are
derived in reference [11] which, after linearization, become

k 1
viL |:Us 1 V} . =§ Urr, (1)

k 1
VLVs + ki [U,S -k VJ -V, @
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Equilibrium configuration

Figure 2. Element schematic.

with the non-dimensional parameters

Uf:ﬂ’ U?Zi, k = KL. 3)
pgL pgL
Here, EA is the track section modulus, pg denotes the track weight/length, and P, is
the static track tension. The quantities v;, v,, and k have the interpretation of the
(non-dimensional) speed of propagation of longitudinal waves, speed of
propagation of transverse waves and equilibrium curvature, respectively.

In a typical track application, the speed of propagating waves in the longitudinal
and transverse directions are quite disparate, with that in the longitudinal direction
being much larger than that in the transverse direction; v;>v,. In the light of this
fact, the model below further assumes that longitudinal waves in the track
propagate sufficiently faster than transverse waves that the track stretching can be
considered quasi-static. Thus, equation (1) governing longitudinal motion of the
track can be approximated by one of statics, namely,

k
[U,S—ZV}S;O. 4)

Equation (4) can be integrated twice to yield an explicit expression for the
longitudinal component U (S, T),

k
Us — 5V = F(T), ®)
k S
US.T) = F(T)S + 7. | V0.T)dn + G(T) ©
0

where F(T) and G(T) are functions of integration. The coupling between the
longitudinal and transverse motions is preserved through the integral term in
equation (6). Equation (5) can be substituted into equation (2) to eliminate U from
the transverse equation of motion leaving

1
v} LVss + kv F(T) =§ Vrr. (7)
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Consider next separate solutions of the form
U, T)=U(S)e", V(S, T)=V(S)e!, F(T)=Fe“’, G(T)= Ge“’, (8)

with o being a natural frequency. Substitution of equation (8) into equation (6) and
(7) yields

S

U(S)=FS + %J 7(n)dn + G, 9)

0
_ _ g)z _
VLV + koiF + —V = 0. (10)
)
The general solution to this “time-reduced” transverse equation of motion (10) is

_ . kvt F
V(S) = Asin(aS) + Bcos(aS) — %, a=—2

(11, 12)

where 4 and B are constants. Appropriate boundary conditions applied to
equations (9) and (11) will complete the single span model which is then extended to
the multi-span track circuit model of section 4.1. Free and forced vibration analyses
of the complete circuit are described in sections 4.2 and 4.3.

3. EXPERIMENTAL VALIDATION

3.1. EXPERIMENTAL APPARATUS AND PROCEDURE

The modelling of a track (composed of a finite number of pitches) by an
equivalent continuum is novel and requires justification. To this end, a series of
experiments were performed on a representative (7-pitch) track span. The purpose
of these tests was to determine how well the continuum element model describes the
low-frequency physics of the track.

The test span shown in Figure 3 is rigidly supported at the left end and connected
to a load cell and a hydraulic actuator at the right end; refer to Figure 4(a). The
span is instrumented between the 2nd and 3rd pitches from the left with two
track-mounted accelerometers, one aligned in the longitudinal direction, the other
in the transverse direction; refer to Figure 4(b).

The track is tensioned to a desired static level, varying between 10000 (44 545 N)
and 20000 Ibs (89091 N), prior to the addition of any excitation. The test span is
then excited with a controlled harmonic longitudinal displacement input provided
by the actuator. The input force is measured from the load cell and combined with
the accelerometer signals to compute the track frequency response over a frequency
range of 0-140 Hz using standard techniques. Through means of the small sag in
the track span developed under its own weight, vibrations in the transverse and
longitudinal directions are coupled. Thus, track resonances consisting largely of
transverse motion can be easily excited via longitudinal input. Using the small sag
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Figure 3. Experimental test stand; 7-pitch track for example vehicle.

cable theory as an approximation to the track span, the resonant frequencies of the
simply supported track span can be readily predicted; see, for example, Irvine and
Caughey [10]. To this end, the characteristic equation follows from equations (9)
and (11) upon using the boundary conditions, U(0, T) = U(L, T) =V (0, T) =
V(L, T)=0.

3.2. EXPERIMENTAL RESULTS

Figure 5(a) shows the measured track frequency response obtained using the
vertical accelerometer for the case of 150001bs (66 818 N) static tension.
Discernible peaks mark the natural frequencies of the first four span modes.
Table 1 compares these measured frequencies to those predicted with the cable
theory. The theory provides excellent agreement for the first two frequencies, an 8%
error for the third, and a 18% error for the fourth. The errors for the third and
fourth modes derive from omitting track bending rigidity (torsional stiffness of
bushings used in pin connectors) which plays an increasingly important role in
stiffening the track for higher order modes. However, as will be shown in section
4.2, many low order system modes of the full track circuit are well described using
just the first two (component) modes of each track span. Moreover, the
experimental results suggest that the continuum model is accurate to within 10%
(for computed strand frequencies) when A > 2-5L,;.,, where A is the distance
between nodes for a vibration mode and L ;. is the length of one track pitch.
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(b)

Figure 4. Experimental hardware: (a) load cell and connection to track span actuator; (b) track
mounted accelerometers.

Figure 5(b) is the corresponding frequency response obtained using the
horizontal accelerometer for the same test. The low-frequency resonances
associated with large transverse track response can again be identified along with
the clear broad resonance centered around approximately 110 Hz. This is the
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Figure 5. Experimental frequency responses: (a) vertical accelerometer; (b) horizontal
accelerometer; 15,000 1bs tension.

natural frequency for the fundamental longitudinal mode for the test span and can
be predicted very well by an equivalent classical (fixed—fixed) rod model; see, for
example, Scholar and Perkins [12]. Because the sagged cable theory employed in
this model treats track stretching as quasi-static, this type of resonance is not
presently captured. Thus, the model developed will be used to analyze dynamics in
the low- to mid-frequency range below the natural frequency of the first
longitudinal mode.
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TABLE 1

Comparison of natural frequencies

Experiment (Hz) Theory (Hz)

fi 72 72
A 147 146
f 253 232
fa 370 297

4. TRACK CIRCUIT MODEL

4.1. FORMULATION

The element model describing the dynamics in a single track span is now
extended to form a model for the entire track circuit. This is done herein in the
context of an example application of a vehicle possessing 5 upper spans, as
illustrated in the schematic of Figure 6.

Notation for the circuit model is shown in Table 2. Assumptions used in
developing this model include: (1) the track does not slip on the wheels (i.e., on
sprocket, idler, support rollers and road wheels); (2) the track possesses uniform
weight/length (pg) and longitudinal stiffness (EA); (3) the vibration of the lower
track spans in contact with the terrain is heavily suppressed.

The boundary and patching conditions required to complete the track circuit
model are as follows. Displacement continuity at the wheels (idler wheel, support
rollers and sprocket) requires

Ui(Lia T) = Ui+1(0a T)a = 1> 2a 3) 4 (13)
The moment equations describing the rotation of the discrete elements provide

10, =rEA[eq,, —ea), i=1,2,3,4, (14)
where

e, = Uis,—— Vi, (15)
represents the dynamic strain of the ith track span. By virtue of the quasi-static
stretching assumption, the dynamic strains remain uniform within each span,
however, they differ in adjacent spans contributing to the rotational motion of the
attached discrete elements. Through this mechanism, tension fluctuations
propagate throughout the circuit. The rotations of the wheels are related to
longitudinal span displacements through
Ui 07 T .
ei=y, i=1,23,4. (16)
Ty
The remaining sets of boundary conditions are inhomogeneous and capture
excitation sources. Two such sources, roadarm motion and polygonal action, are
considered next.
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Figure 6. Schematic of upper spans for example vehicle.

TABLE 2

Nomenclature

Variable Description

—

5 Longitudinal displacement in ith span

5 Transverse displacement in ith span

4 Clockwise rotation of ith wheel
55 Length of ith span

4

4

> <o

[ | | I
—_ e

=

Moment of inertia of ith wheel
Radius of ith wheel

Sl B e
PO RO MO M N o

=

4.1.1. Roadarm motion

Prescribed rotations of the front and read road arms, o (T') and o5(T'), respectively,
generate both transverse and longitudinal motion at the track circuit boundary.
The inhomogeneous boundary conditions describing this track excitation are

Ui (0, T) = kyyou(T),  V1(0, T) = kyy04(T), (17)
Us(Ls, T) = k,sas(T), Vs(Ls, T) = kysos(T). (18)

With reference to Figure 6, k,; and k,; are determined by the length of the front
roadarm and the projection of the unit vector o, onto the directions of U;
and V; respectively. Similarly, the length of the rear roadarm and the projection of
the unit vector o, onto the directions of Us and V5 determine the constants k,s and
k,s respectively.

4.1.2. Polygonal action

As the track engages the sprocket or any circuit wheel, the pitches conform to
a polygon rather than a true circle. The instantaneous pitch diameter alternates
between that of the inscribed and circumscribed circles of the pitch polygon. This
mechanism of “polygonal action” has been well discussed in the literature on chain
drives [ 13-15]. It can lead to chain vibration and to speed fluctuations even with
constant speed of the drive sprocket. Using an equivalent four-bar linkage, Lee [15]
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models the kinematic effects of polygonal action in a standard chain drive. This
concept is extended herein in the context of the track circuit. In this model, the
time-harmonic effect of polygonal action is modelled as a prescribed displacement
in the transverse direction at the points where the track engages and disengages
with the sprocket, idler, and front and rear roadwheels. The inhomogeneous
transverse boundary conditions become

Vi(0, T) = kyp cos(QT + ¢y,), Vi(Ly, T) = kp; cos(QT + ¢)), (19)
V5(0, T) = ky; cos(QT + ¢,), Vi(La, T) = kpscos(QT + ¢y), (20, 21)
Vs, T) = kpscos(QT + ¢),  Vs(Ls, T) = kp cos(QT + ¢,.). (22)

Here, the constants ks, kp;, k,s, and k. are the amplitudes of the polygonal action
as defined in Appendix A. Likewise, the quantities ¢ ., ¢;, ¢, and ¢,, represent the
relative phase of the polygonal action; again see Appendix A. Finally, Q is the
frequency of polygonal action given by

_ 27'5 I/tank

Lpitch

Q

; (23)

where V., 1s the vehicle speed and L, is the track pitch length.

The time dependency of polygonal action above is approximated using the
fundamental frequency (pitch passage frequency) and ignoring the higher
harmonics that also exist. While one could incorporate these higher harmonics in
the very same manner as the fundamental frequency here, one must also recognize
the limitations of modelling pitch/sprocket interaction based on kinematics alone.
Higher fidelity models of this interaction would follow from including the kinetic
effects associated with the impact of the pitch on the sprocket while seating. Refer,
for instance, to impact models used for chain drives [16].

4.2. NATURAL FREQUENCIES AND MODE SHAPES

Consider first the eigenvalue problem governing the natural frequencies and
mode shapes of the track circuit. To this end, set the right-hand sides of equations
(17)-(22) to zero to define free response.

These boundary conditions are evaluated using the general solutions for the
longitudinal and transverse span displacements, equations (9) and (11). Collection
of the resulting 20 algebraic equations yields an eigenvalue problem of the form

R(w)-a =0, (24)

where R is a (20 x 20) matrix whose elements are functions of w, and a is an
eigenvector containing the constants A;, B;, F;, and G;, i=1,2,...,5. The
eigenvalues are determined as the roots of the determinant of R and are computed
using standard Newton-Raphson iteration. The eigenvectors (hence the
eigenfunctions) are determined by back substitution of @ into equation (24).
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Table 3 summarizes the numerical data that defines the example application
discussed in this paper.

Figure 7 illustrates the first four track circuit modes. Each low-order mode shape
involves transverse motion largely contained within one span of the circuit with
small components in all other spans due to weak coupling across the discrete
elements. Accordingly, the fundamental natural frequency of 3-7 Hz can also be
closely approximated by the single element method of section 2 applied to
a fixed-fixed span with length L.

Likewise, the remaining low order modes shown exhibit a response localized to the
longer spans. The character of higher order modes follows largely the same pattern of
the four shown in Figure 7. However, as the mode number increases, the coupling
increases and multiple spans may contribute more significantly to each mode.

It should be recognized that the presence of such low-frequency vibration
modes severely limits the range of fidelity of any models employing a massless
track (spring) representation. In other words, the bandwidth of any massless
track model may be less than 3 Hz for the (typical) application considered
here.

TABLE 3
Example
Variable Description Value (U.S)) Value (SI)
EA Elastic modulus 2:50 x 106 1b 11-1x10° N
0 Track linear density 90-01b ft 133-:0 kg/m
P, Static track tension 14000 1b 62364 N
Ly,...,Ls Span lengths 3-39/4:69/9-67/6-48/3-20ft  1-03/1-43/2:95/1-98/0-98 m
I Idler inertia 9-02 1b-ft—ft 0-38 kg-m-m
1,3 Support roller inertia 2:67 1b-ft—ft 0-11 kg-m-m
1, Sprocket inertia 9-66 1b-ft—ft 0-41 kg-m-m
1 Idler radius 1-04 ft 0-32m
2.3 Support roller radius 0-42 ft 0-13 m
s Sprocket radius 112 ft 0-34 m

f,=37THz f,=55Hz

L=T3Hz fi=T6Hz

Figure 7. Vibration mode shapes.
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4.3. FORCED RESPONSE

The system modes of section 4.2 can be used to calculate the forced response
using classical modal analysis. The excitation sources considered are modelled
by the inhomogeneous boundary conditions (17)-(22). Incorporation of
these boundary conditions involves a variable transformation which employs
simple interpolation functions that satisfy the inhomogeneous boundary
conditions. Following this transformation, the forced response problem can be
formulated as

VIS, T)
V382, T)
Viss, T)
Vi(Ss, T)
I _| V55, T)
LIv*] + M[v%.] =1, vE = UX(S,. T) (25)
U3(S2, T)
U3(Ss, T)
Ui(Sa, T)
Us(Ss, T)

Here, L is a matrix of linear differential operators and M is a matrix of
scalars. The vector v* contains five functions representing the transverse
span displacements, and five functions representing the rotation of each wheel.
The elements within v* are transformations of the span displacement functions
and satisfy homogeneous boundary conditions. The vector f contains the
by-products of this transformation, the details of which are included in Appendix A.
The response vector v* can be expanded using an infinite number of modes
as follows:

; (26)
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where f; is the jth modal co-ordinate. The (decoupled) equations governing the
modal co-ordinates are found through substitution of equation (26) into equation
(25) and forming an inner-product with the mode v,,

Y [BALITL W + BiKMIF;1 % = < 7o) (27)
j=1
The inner product of two eigenvectors v; and ¥, is defined as

Griy = 3 f U (S)V(S)dS: + GG, (28)

i=1J0

The modes are orthogonal with respect to the operators L and M and equation
(27) reduces to the decoupled modal equations

B+ w}B;=0iT), j=12,.., (29)
_ <f7 v1>
0,(T) = ML (30)

where w; is the jth system natural frequency and Q;(T') is the contribution of the
forcing to the jth mode. At this stage, it is possible to add appropriate levels of
damping to each mode through obvious modification of equation (29). The
decoupled set of equations (29) are readily integrated in time for each selected mode
and the response vector v* can then be reconstructed using equation (26). The track
responses presented here will be expanded using the first 8 system modes, the eighth
of which has a frequency of approximately 12 Hz, and are also based on using
a modal damping factor of 5% of critical damping.

4.4. EXAMPLE RESULTS

Three example excitation mechanisms will be used to illustrate characteristics
of track vibration. First, a pure harmonic excitation is used to determine the
track circuit frequency response. Second, the effects of polygonal action will be
investigated in the context of a vehicle traversing flat terrain. Lastly, the track
response to the excitation encountered as a tank travels over an example bump
course will be shown.

4.4.1. Excitation 1: frequency response

Consider the input to the track circuit to be a prescribed harmonic longitudinal
displacement at the front roadwheel. The frequency of the harmonic displacement
may vary from 0 to 14 Hz for the purpose of exciting low order track modes while
the amplitudes of the displacement is held constant at 0-1 ft (3-05 cm). Figure 8
illustrates the track frequency response using the mid-span transverse response
amplitude of the five spans as one measure of the output.



VEHICLE TRACK SYSTEMS 1071

The clear resonances in Figure 8 coincide with the circuit natural frequencies
reported in Figure 7 as required. The longest track span, span 3, dominates the
response in the first resonance and, in order of decreasing length, the other spans
dominate the subsequent resonances. The longest span remains the softest span of
the circuit and therefore the response magnitude will increase with any increase in
span length. Note that the coupling between longitudinal and transverse motions
captured by the element model allows transverse response to be excited with pure
longitudinal input.

4.4.2. Excitation 2: polygonal action

Transverse input of course directly excites transverse track response. One
mechanism that generates transverse input is polygonal action. To illustrate this,
consider a vehicle traversing nominally flat terrain at various speeds ranging up to
7 mph (11-3 kph). The results in Figure 9 illustrate the track frequency response; refer
to equation (23) and note that the excitation frequency Q is directly proportional to
the track speed. As before, the (steady state) mid-span transverse response amplitude
of the five circuit spans is used as the output. In Figure 9, the span resonances occur
at track speeds that directly correlate to the resonance frequencies of Figure 8. The
response magnitude is greatest for span 5 due to its location between the sprocket
and rear roadwheel, two major sites of excitation from polygonal action. By
contrast, span 3 exhibits very little response as it remains well isolated from the sites

2-5

=
(V)

Mid span transverse response (in)
amplitude

05

Frequency (Hz)

Figure 8. Track frequency response to harmonic longitudinal excitation at front road wheel:
0000, span 1; — - —-— , span 2; —— span 3; X X X X, span 4; - — - —, span 5.
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Mid span transverse response (in)
amplitude
_
tn

Track speed (mph)

Figure 9. Track frequency response to polygonal action: OO0 O, span 1; — - — - — ,span 2; ——,
span 3; X X X X, span 4; - - — —, span 5.

where polygonal action exists. The overall vibration amplitudes at resonance,
ranging from 1-5 to 3-0 in (3-8-7-6 cm), are on the order of the static sag for a given
span sagging under its own weight. Thus, even in the seemingly benign case of
traversing flat terrain at low speeds, significant track vibration exists.

4.4.3. Excitation 3: bump course

Clearly, a major source of track vibration is the response of the vehicle to uneven
terrain. One mechanism for producing this vibration is the response of the track to
the rotations of the front and rear roadwheels/roadarms. This example illustrates
this mechanism by employing example front and rear roadarm motions first
computed using an established tracked vehicle code.” The computed roadarm
motions are then used to drive the upper-span track vibration model developed
herein through boundary conditions (17)-(18). The roadarm motions are those
developed for the example tracked vehicle traversing an uneven paved road course
at a constant speed of 11 mph (177 kph). The course contains a series of 4-5in
(114 cm) and 6 in (15-2 cm) high trapezoidal obstacles spaced approximately 35 ft
apart.

Figure 10(a) illustrates the front roadarm angle time history, the spectral content
of which appears in Figure 10(b). Figure 11(a) illustrates the mid-span transverse

T Tracked vehicle code is based on the track super-element [4] with results provided by J. Weller from
U.S. Army TACOM.
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Figure 10. Bump course input: (a) front roadarm input; (b) input power spectral density.

response of span 3 over the 90 s simulation. The maximum transverse displacement
of this span, approximately 5 in, is sufficiently large to create impact of the track
with the underside of the hull (sponson). Furthermore, the pitch and bounce
motions of the vehicle as it crosses such a course, though not presently represented
here as an excitation source, would likely contribute substantial additional energy
to the low order circuit modes.

The zoom view of the time response, Figure 11(b), illustrates two distinct
vibration frequencies. One occurs at approximately 3-7 Hz, the frequency of
the fundamental circuit mode, and superimposed upon it is the pitch passing
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frequency of approximately 25 Hz. The pitch passing frequency correlates
directly with the effect of polygonal action at a track speed of 11 mph (17-7 kph).
The spectral content of the response is illustrated in Figure 11(c). Much
of the response energy remains below 5 Hz and this suggests that a two-mode
model of the track would successfully capture the essential features of
track vibration in this case. Such a low order model of the track would clearly
benefit any effort to compute real-time track response over a bandwidth including
track vibration.

@

Mid-span transverse response (in)

Mid-span transverse response (in)

36 365 37 375 38
Time

Figure 11. Bump course responses: (a) mid-span response of span 3; (b) zoom view; (c) response
power spectral density.
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Figure 11. Continued

5. SUMMARY AND CONCLUSIONS

There is a need for low order tracked vehicle models that capture the essential
features of track vibration. Existing multi-body dynamic track models capture
track vibration, however, they do so at the expense of model size; i.e., large d.o.f.
This paper offers an alternative modelling strategy, based on a continuum model
for the track, that leads to low-order track models.

In contrast to a multi-body approach, the track spans are modelled herein as
continuum elements that describe both longitudinal (quasi-static) and transverse
modes of vibration. Experiments on a representative track span support the use of
the continuum element model for low order track vibration modes. A track circuit
model, composed of multiple spans coupled to the remaining rigid-body elements
of the track circuit, is developed by repeated use of the element model. An
eigenanalysis of the circuit model leads to the track system modes that are
subsequently employed in computing forced response. The natural frequency of the
fundamental system mode (calculated to be approximately 3 Hz in the example)
places severe restriction on the range of fidelity of models employing a massless
track representation.

Principal characteristics of track vibration are evaluated by considering
excitation from (1) roadarm motion and (2) polygonal action. Results for a vehicle
traversing level terrain indicate that notable track vibration levels exist from
polygonal action alone. Both excitation sources are active as the vehicle traverses
uneven terrain. Results from an example bump course reveal that track response
decomposes into vibration due to polygonal action (relatively high frequency) and
vibration due to terrain-induced roadarm motion (relatively low frequency). The
associated power spectrum suggests that track vibration response is well described
using just two system modes for the example herein.
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Employing low order system modes to describe track vibration is an efficient
alternative to conventional multi-body modelling methods. To this end, the
authors’ research group has implemented this track model within a full tracked
vehicle model, the results of which will be the subject of a forthcoming article. The
resulting full vehicle model could provide rapid estimates of track vibration
response and prove useful for evaluating tracked vehicle designs and for supporting
real-time vehicle simulation.
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APPENDIX A: MATRIX EXPRESSIONS

The inhomogeneous boundary conditions due to roadarm motions and
polygonal action are satisfied through the following variable transformation:

Vi(S1, T)=Vi(S1, T) + [ko1os (T) + kpprcos(QT + ¢1,)] [1 — &}

L,
]
+ kpicos(QT + ¢) | — |, (A1)
L,
V2(S2, T) = V5(Sa, T) + kyicos(QT + ¢,) |:1 — %:|, (A2)
2
V3(S37 T) = VSK(S?H T)a (A3)
Va(Sa, T) = V35(S4, T) + kpscos(QT + ¢y) [%} (A4)
4
Ss
V5(555 T) = V?(SSa T) + [kUSOCS(T) + kprr COS(QT + (.brr)] |:L_5i|
-z
+ kpscos(QT + ¢ | 1 — — |, (A5)
Ls
Ul(Sla T) = UT(Sla T) + kulal(T) |:1 - i_i:|’ (A6)

UZ(SZa T) = UEK(Sza T), Us(Ssa T) = U?(Ssa T), U4(S47 T) = Uf(Sm T)-
(A7-A9)

S
Us(Ss, T) = U3(Ss, T) + kysos(T) [L_j (A10)

The constants k1., ks, kps, and k,,, are the amplitudes of the polygonal action at
the front roadwheel, idler, drive sprocket and rear roadwheel respectively. These
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amplitudes are determined by

R[1 — cos(sin™ ' [Lien/2R])]

p 2 4
where L., 1s the track pitch length and R is the wheel radius at the site of
polygonal action. The quantities ¢ ., ¢;, ¢, and ¢,, are the relative phases of the
polygonal action at the front roadwheel, idler, drive sprocket and rear roadwheel
respectively. Time phasing between the action at different sites within the circuit is
accounted for by calculation of the fractional number of pitches which lie in
adjacent track spans. An integral number of pitches yields exactly in-phase
excitation while an odd number of half-pitches yields a phase angle of .

The linear interpolation functions appearing above satisfy the non-homogeneous
boundary conditions (17)-(22) and the remaining variables, V¥, U¥,i=1,2,...,5
satisfy homogeneous boundary conditions. These variables are then expanded in an
eigenfunction expansion as per section 4.3.

When these solution forms are substituted into equations of motion (2) and (14),
the resulting set of equations are given by equation (25) with the operators L and
M defined as

k (A11)

ago 0 0 0 O b 0 0 0 O
aa 0 0 0 O b, 0 0 O O
as 0 0 0 0 b3 0 O 0 O
L_ |4 0 0 0 0 b 0 0 0 0 C 0
~ /0 0 0 o0 0 0 0 0 0 0 |, M=0bl
—ai a; 0 0 0 by —by 0 0 O
0 —dayay 0 0 0 by —by 0 0
0 0 —asa; 0 0 O by —b, O
0 0 0 —ayas O O O by —b;s
_ ) (A12, A13)
where ) )
r - dy 0 0 0 0
1000 0 I,
g —
01000 0 10 0 0
C=[0 0 5 00|, D=0 0 —=d 0 0 | (Al4AI5
1 r;
9 I
000! (1) o o0 o Ba o
00001 A
) ) 0 0 0 0 g,
Fq
ok o o
a; = I O — vz LiOs.s. | b =[— kiviiOs], (A16, A17)
ki

ai = — D, bl’ = D,S;’ di = D |Si:O' (A18—A20)
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